
Jupiter Perpetuals
Smart Contract Security
Assessment

February 2024

Prepared for:
Jupiter

Prepared by:
Offside Labs
Ronny Xing

Siji Feng

Zhipeng Xu

Contents

1 About Offside Labs 2

2 Executive Summary 3

3 Summary of Findings 5

4 Key Findings and Recommendations 6
4.1 Stale Limit Order Position Requests Lead to Potential Harmful Executions . . . 6
4.2 swap_exact_out Can Be Used to Steal Assets Due to Rounding Errors 8
4.3 Inconsistent Calculation of Fees for swap_exact_out 9
4.4 Confusing the position_request_ata Can Be Used for DoS 10
4.5 validate_market_order Can Skip Slippage Verification When entire_position Is

True . 12
4.6 withdraw_fees Does Not Update the funding_rate Before Updating the Assets

Owned . 13
4.7 Sequential Processing of Limit Orders to Ensure Predictability 14
4.8 Limit Orders Can Be Used to Get a Free Look Into the Future 14
4.9 Request Update Instruction Relaxes the Expiration Time of the Oracle Prices . . 15
4.10 Unprotected Jupiter Swap Integration for Limit Order 17
4.11 Informational and Undetermined Issues . 17

5 Disclaimer 21

1 Jupiter

1 About Offside Labs

Offside Labs is a leading security research team, composed of top talented hackers from both
academia and industry.

We possess a wide range of expertise in modern software systems, including, but not limited
to, browsers, operating systems, IoT devices, and hypervisors. We are also at the forefront
of innovative areas like cryptocurrencies and blockchain technologies. Among our notable
accomplishments are remote jailbreaks of devices such as the iPhone and PlayStation 4, and
addressing critical vulnerabilities in the Tron Network.

Our team actively engages with and contributes to the security community. Having won and
also co-organized DEFCON CTF, the most famous CTF competition in the Web2 era, we also
triumphed in the ParadigmCTF 2023within theWeb3 space. In addition, our efforts in respon-
sibly disclosingnumerous vulnerabilities to leading tech companies, suchasApple,Google, and
Microsoft, have protected digital assets valued at over $300million.

In the transition towardsWeb3, Offside Labs has achieved remarkable success. Wehave earned
over$9million in bugbounties, and threeof our innovative techniqueswere recognizedamong
the top 10 blockchain hacking techniques of 2022 by the Web3 security community.

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

2 Jupiter

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

2 Executive Summary

Introduction

Offside Labs completed a security audit of Jupiter-Perpetuals smart contracts, starting on
February 20, 2024, and concluding on March 11, 2024.

Project Overview

Jupiter Perpetuals exchange is a novel LP-to-trader perpetual exchange on Solana, offering
up to 100x leverage. Utilizing LP pool liquidity and oracles, it ensures zero price impact, zero
slippage, and deep liquidity. Oracles enable stable market operations during liquidations and
stop-loss events, removing risks of position bankruptcy and LP pool fund loss. Users can open
and close positions in one simple step, eliminating the need for additional accounts or deposits.
With the Jupiter Swap integration, any Solana token can be used to open positions.

Audit Scope

The assessment scope contains mainly the smart contracts of the Perpetuals program for the
Jupiter Perpetuals Exchange project.

The audit is based on the following specific branches and commit hashes of the codebase repos-
itories:

• Jupiter Perpetuals
• Branch: main
• Commit Hash: 1647dfa818b4560614acdde1b7be6a9931d5671a
• Codebase Link

We listed the files we have audited below:

• Jupiter Perpetuals Solana on-chain Program
• programs/perpetuals/src/**/*.rs
• Exclude

• programs/perpetuals/src/*test*.rs
• inline tests

• Jupiter Perpetuals Keeper
• Keeper/src/**/*.ts

Findings

The security audit revealed:

• 1 critical issue
• 1 high issues
• 6 medium issues
• 2 low issues
• 6 informational issues

3 Jupiter

https://github.com/jup-ag/perpetuals/tree/1647dfa818b4560614acdde1b7be6a9931d5671a

Further details, including the nature of these issues and recommendations for their remedia-
tion, are detailed in the subsequent sections of this report.

4 Jupiter

3 Summary of Findings

ID Title Severity Status

01 Stale Limit Order Position Requests Lead to
Potential Harmful Executions Critical Fixed

02 swap_exact_out Can Be Used to Steal Assets Due to
Rounding Errors High Fixed

03 Inconsistent Calculation of Fees for swap_exact_-
out Medium Fixed

04 Confusing the position_request_ata Can Be Used
for DoS Medium Fixed

05 validate_market_order Can Skip Slippage
Verification When entire_position Is True Medium Fixed

06 withdraw_fees Does Not Update the funding_rate
Before Updating the Assets Owned Medium Fixed

07 Sequential Processing of Limit Orders to Ensure
Predictability Medium Acknowledged

08 Limit Orders Can Be Used to Get a Free Look Into
the Future Medium Fixed

09 Request Update Instruction Relaxes the Expiration
Time of the Oracle Prices Low Fixed

10 Unprotected Jupiter Swap Integration for Limit
Order Low Fixed

11 Unchecked Rounding up for PNL and Fee May Result
in DoS Informational Acknowledged

12 Pool Constraint Is Missing in the Close Position
Request Instruction Informational Acknowledged

13 Fee Calculation Related to Pool Balancing Is
Inaccurate Informational Acknowledged

14 Limit Keeper Capabilities of Setting Global
Configurations Informational Acknowledged

15 Filter or Freeze Market Orders That Cannot Be
Closed Informational Acknowledged

16 Refactoring the Owner Account Definition in
DecreasePosition2 Informational Fixed

5 Jupiter

4 Key Findings and Recommendations

4.1 Stale Limit Order Position Requests Lead to Potential Harmful Execu-
tions

Severity: Critical Status: Fixed

Target: Smart Contract Category: Timing Error

Description

When the keeper triggers a limit order and the execution of this order reverts or blocked
by some external factors, the stale limit order requests are not cleared from the account
storage and remain visible to the keeper for subsequent scans. This allows attackers / nor-
mal users / malicious keepers to exploit this feature to carry out some potential harmful
executions.

Impact

Here are three possible exploitation scenarios:

1. If a user accidentally fails to provide enough collateral for the limit order, causing its
execution to fail, the order remains pending and could be re-executedwhenever the user
increases their collateral with a new request. Such executions are concerning because
the stale orders may have out-of-date prices. An outdated price could be significantly
unfavorable to the user, potentially resulting in a loss of funds.
Additionally, amalicious keeper could exploit this flaw, waiting for changes in collateral
to execute these stale orders to the detriment of the user.

2. Increase / decrease position instructions will ensure the position leverage must be
greater than or equal to 1 in the Position::validate function.

59 self.size_usd >= self.collateral_usd

But it does not, nor can it guarantee this leverage in the create request ix. Therefore, like
the previous scenario, the keeper may be blocked when executing the increase trigger
request if the leverage is smaller than 1.
After the user completes the decrease collateral request, the stale limit order may exe-
cute immediately at an outdated trigger price which lead to substantial losses for the
user.

3. There is a quirk in the create_decrease_position_request() , that it uses
position.size_usd to override the local variable size_usd_delta when the
entire_position field is true, and this is also the case in decrease_position2.

6 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/state/position.rs#L59
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/decrease_position2.rs#L233-L236

233 let size_usd_delta = match position_request.entire_position {

234 Some(true) => position.size_usd,

235 _ => position_request.size_usd_delta,

236 };

The limit order request will ultimately be executed at the trigger price.

300 let (token_price, exit_price) = match position_request.request_type {

301 RequestType::Market => (current_token_price, current_exit_price),

302 RequestType::Trigger => {

303 if let Some(trigger_price) = position_request.trigger_price {

304 msg!("Trigger order price: {}", trigger_price);

305 (

306 OraclePrice::new(trigger_price,

-(Perpetuals::PRICE_DECIMALS as i32)),↪

307 trigger_price,

308)

309 } else {

310 return

Err(PerpetualsError::InvalidPositionRequest.into());↪

311 }

312 }

313 };

It provides us with a critical attack vector. If an attacker can forcibly block the execu-
tion of limit orders, this attack vector could combine with various issues to have severe
impacts. There is a highly probable exploitation to steal funds from the pool.

Proof of Concept

Due to the limitations in fully simulating the keeper’s behavior, we wrote a PoC specifically
for the on-chain component.

The exploitation flow is listed below:

1. The attacker first creates a long positionwith dust size: Long Sol at price $100, collateral
SOL 0.00000004 and size_usd_delta $0.000003

2. Then the attacker can first create a limit order (always a Stop-loss order) decrease po-
sition request with entire_position = true at current price $100. And the request
calls for a swap to WBTC.

3. This request should be triggered immediately. But since the out amount from decreas-
ing position is 40 lamports, the Jupiter quote api can’t find a swap path:

$ curl

'https://quote-api.jup.ag/v6/quote?outputMint=3NZ9JMVBmGAqocybic2c7LQC↪

JScmgsAZ6vQqTDzcqmJh&inputMint=So112

&amount=40&slippageBps=100&maxAccounts=45'

{"error":"Could not find any route"}

7 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/decrease_position2.rs#L300-L313

4. So the request will be blocked but still waiting in the queue.
5. Now the sol price is falling to $50, the attacker creates a market increase request with

size_usd_delta $100 and 1 Sol as collateral.
6. After the increase request was executed, the pre decrease request will be executed suc-
cessfully. Because there is enough output SOL amount to swap by Jupiter api.

7. But the entire position will be decreased at the price of $100, including the size_usd

increased at the price of $50. So, the attacker can immediately profit by about 1 SOL.

Recommendation

1. Filter and freeze triggered but failed limit orders to exclude problematic orders from
future processing. These orders often conceal anomalies, although they are not neces-
sarily malicious.

2. Implement a slippage check for position requests to prevent execution when the trig-
gered price deviates significantly from the current market price.

3. Alternatively, a more aggressive security mitigation would be to enforce trigger orders
to also execute at market price.

Mitigation Review Log

Offside Labs: Fixed:

• A new ix decrease_position3 has been added to replace decrease_position2 , and
the new decrease position instruction will no longer have Jupiter exchange built in.

• For other scenarios that may cause position losses, validation for opening/adjusting posi-
tions has been added to the front end.

4.2 swap_exact_out Can BeUsed to Steal Assets Due to Rounding Errors

Severity: High Status: Fixed

Target: Smart Contract Category: Logic Error

Description

The swap_exact_out instruction uses Pool::get_swap_exact_out_in_amount to get
the input token amount for the swap. But the issue is that the get_swap_exact_out_in_-
amount uses floor div.

8 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/state/pool.rs#L282-L288
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/state/pool.rs#L282-L288

282 Ok(TokenAmount(math::checked_decimal_div(

283 amount_out.0,

284 -(custody_out.decimals as i32),

285 swap_price.price,

286 swap_price.exponent,

287 -(custody_in.decimals as i32),

288)?))

Impact

This will cause the price to plummet during dust swaps, and could even result in an input
amount of 0.

Due to the low gas fees on Solana, this makes the attack exploitable. For example, we can
steal 10−8 of BTC with each swap, and we can fit 150 swaps in one transaction (this may
need Address Lookup Table to compress the size of the tx), the profit from each transac-
tion will be

10−8 × $𝐵𝑇 𝐶 × 150 − 𝑓𝑒𝑒_𝑙𝑎𝑚𝑝𝑜𝑟𝑡𝑠 × $𝑆𝑂𝐿 ≈ $0.0745

The loss froma single transaction is no longer dust, and the accumulation ofmultiple trans-
actions will steal a vast amount of assets.

Proof of Concept

In the PoC test, it is assumed that the price of BTC is $36340, the price of ETH is $1977, and
both have 8 decimals.

The attacker uses the attacker will use 0 BTC to exchange for 18 × 10−8 ETH in each swap.

Recommendation

It should use ceil div here to get the input amount.

Mitigation Review Log

Offside Labs: Fixed, now it uses checked_decimal_ceil_div for input amount.

4.3 Inconsistent Calculation of Fees for swap_exact_out

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

9 Jupiter

Description

The formula for calculating the swap fee in swap_exact_out is inconsistent with that in
the swap ix.

Suppose we use swap and swap_exact_out to obtain the same out amount. Assume
that amount_in_1 is the input amount required for swap, and amount_in_2 is required
for swap_exact_out .

Also assume that the fee rate remains unchanged in both swaps (in fact, the fee rate might
differ because the swap fee needs to be accounted for in usd_delta , but for the purpose
of simplification, we consider the scenario where the fee rate is constant).

𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_1 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_1 × 𝑝𝑟𝑖𝑐𝑒 × (1 − 𝐹)

𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_2 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_1
𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_2 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_2

𝑝𝑟𝑖𝑐𝑒 × (1 + 𝐹)

= 𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_1 × 𝑝𝑟𝑖𝑐𝑒 × (1 − 𝐹)
𝑝𝑟𝑖𝑐𝑒 × (1 + 𝐹)

= 𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_1 × (1 − 𝐹) × (1 + 𝐹)
Because F < 1, therefore amount_in_2 < amount_in_1 .

Impact

The fee paid for swap_exact_out is less than that for swap ix.

Recommendation

Assume amount_out_2 = amount_out_1 , let:

𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_2 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑖𝑛_1 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_1
𝑝𝑟𝑖𝑐𝑒 × (1 − 𝐹) = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑢𝑡_2

𝑝𝑟𝑖𝑐𝑒 × (1 − 𝐹)

Mitigation Review Log

Offside Labs:Fixed.

4.4 Confusing the position_request_ata Can BeUsed for DoS

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

10 Jupiter

Description

The ix create_increase_position_request / create_decrease_position_request

have the followingaccounts constraint for position_request and position_request_ata

.

67 #[account(

68 init,

69 payer = owner,

70 space = PositionRequest::LEN,

71 seeds = [POSITION_REQUEST_SEED,

72 position.key().as_ref(),

73 params.counter.to_le_bytes().as_ref(),

74 &[RequestChange::Increase as u8]],

75 bump

76)]

77 pub position_request: Box<Account<'info, PositionRequest>>,

programs/perpetuals/src/instructions/create_increase_position_request.rs#L67-L85

This requires that the position_request_ata account and the position_request must
be initialized at the same time within the instruction.

Impact

It led to the following two issues with the confusion of the ata accounts in the close request
ix:

1. The close position request ix only checks if the position_request_ata belongs to
position_request , without verifying whether the position_request_ata is indeed
the associated token account.

52 #[account(

53 mut,

54 token::authority = position_request,

55)]

56 pub position_request_ata: Box<Account<'info, TokenAccount>>,

programs/perpetuals/src/instructions/close_position_request.rs#L52-L56

So Malicious keepers or user errors can close the position_request account with a
different ata (just a common token account) in the close instruction. Due to the restric-
tions in the create request ixs, the ata cannot be re-inited, resulting in the permanent
loss of funds in the real request ata.

2. Front-runners have the ability to preemptively create position_request_ata , aiming
to obstruct users fromcreating their own requests. However, it is important to note that
this attack is ultimately pointless and lacks any meaningful impact.

11 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/create_increase_position_request.rs#L67-L85
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/close_position_request.rs#L52-L56

Recommendation

Replace the init with init_if_needed for position_request_ata . And use
associated_token::authority = position_request in the ClosePositionRequest

for position_request_ata .

Mitigation Review Log

Jupiter Team: PR-64

Offside Labs:Fixed.

4.5 validate_market_order Can Skip Slippage VerificationWhen entire_-
position Is True

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

Onlywhen self.size_usd_delta > 0 , the PositionRequest.validate_market_order()

function will check if the current_price cross the self.price_slippage .

170 pub fn validate_market_order(&self, current_price: u64, side: Side) ->

Result<()> {↪

171 if self.size_usd_delta > 0 {

programs/perpetuals/src/state/position_request.rs#L170-L171

But if the entire_position is true when creating a market decrease position request,
the params.size_usd_delta can be zero. And in this case, the price slippage check will
be skipped directly.

Impact

Users’ market decrease position request will not be protected and may suffer significant
slippage losses.

Recommendation

Change the branch condition to self.size_usd_delta > 0 || self.entire_position .

Mitigation Review Log

Jupiter Team: PR-64

12 Jupiter

https://github.com/jup-ag/perpetuals/pull/64
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/state/position_request.rs#L170-L171
https://github.com/jup-ag/perpetuals/pull/64

Offside Labs:Fixed.

4.6 withdraw_feesDoesNotUpdatethefunding_rateBeforeUpdatingthe
Assets Owned

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

The withdraw_fees ix distributes theaccumulated fees_reserves to the corresponding
custodyby calling custody.increase_owned . But it doesn’t call update_cumulative_fun
ding_rate before increase the owned assets.

124 custody.increase_owned(pool_token_amount, &mut

ctx.accounts.custody_token_account)?;↪

programs/perpetuals/src/instructions/withdraw_fees.rs#L124

Impact

Since the funding_rate changes positively with the utilization rate of assets, increasing
owned assets before updating the rate will lead to a decrease in the asset utilization rate
during the next rate update.

This will result in users losing a small portion of the interest that accumulated from the last
funding_rate update until the withdraw_fees .

Recommendation

Should call update_cumulative_funding_rate before any operation which can modify
the owned/locked assets of the custody.

Mitigation Review Log

Jupiter Team: PR-64

Offside Labs:Fixed.

13 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/withdraw_fees.rs#L124
https://github.com/jup-ag/perpetuals/pull/64

4.7 Sequential Processing of Limit Orders to Ensure Predictability

Severity: Medium Status: Acknowledged

Target: Smart Contract Category: Logic Error

Description

Currently, position requests are fetched from the RPC in an unsortedmanner and executed
asynchronously. While this approachmay be acceptable formarket orders, it presents com-
plications for limit orders. Given the potential for limit orders to fail, it is reasonable that po-
sition requests from the same user be executed sequentially. This will prevent unexpected
outcomes resulting from accidentally skipped requests.

Impact

Consider a scenario where a user submits two requests to long $SOL at trigger prices of
$140 and $141, respectively. If the market price suddenly drops to $139, both orders are
triggered. However, the user only has sufficient collateral to open one position. The user
would reasonably expect to purchase SOL at the lower price of $140 and for the system
to ignore the second request. With the current system, which handles requests in a non-
sequential manner, there is no guarantee of this outcome.

Recommendation

Limit order position requests should be grouped by user and then sorted. They need to be
executed in order of their trigger price followed by the time they were updated, to ensure
fairness and predictability.

Mitigation Review Log

Jupiter Team: Acknowledged. Not working on this first until we figure out Limit Order.

4.8 Limit Orders Can BeUsed to Get a Free Look Into the Future

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

This is an issue already confirmed and fixed in GMX V2: issue-130 and issue-241.

The increase_position2 / decrease_position2 instructions will check if the current
time is later than theupdate timeof the request by position_request.validate_time(cur

14 Jupiter

https://github.com/sherlock-audit/2023-02-gmx-judging/issues/130
https://github.com/sherlock-audit/2023-04-gmx-judging/issues/241

time)? when executing the limit orders. If not, the tx will revert and the keeper will retry
it.

This mechanism allows malicious users to peek at future prices without any loss and ma-
nipulate positions at will for profit.

Proof of Concept

Themain exploitation scenario occurs when reducing positions using limit orders. If a user
has a pending exit order that was submitted at slot N, because the get_pyth_price()

function require the price update time must be later than request update time, the user
can see the pyth pull price at the next update before the request is executed.

322 require_gt!(

323 pyth_price.publish_time,

324 min_time,

325 PerpetualsError::OraclePublishTimeTooEarly

326);

programs/perpetuals/src/state/oracle.rs#L322-L326

If the next price will be more favorable, they can update their exit order, changing the
amount by +/- 1 lamport, and have the order execution delayed until the next pyth pull
price updated, at which point they can decide again whether the price and or impact is
favorable, and whether to exit.

Recommendation

Require a delay for position request update between every time the request was cre-
ated/updated, like the pool.max_request_execution_sec for the closing market
orders.

Mitigation Review Log

Jupiter Team: PR-64

Offside Labs:Fixed, the function validate_update_time is added to to prevent trader to
get a free look into future price.

4.9 Request Update Instruction Relaxes the Expiration Time of the Oracle
Prices

Severity: Low Status: Fixed

Target: Smart Contract Category: Logic Error

15 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/state/oracle.rs#L322-L326
https://github.com/jup-ag/perpetuals/pull/64

Description

When creating a Trigger request, stale_tolerance will adopt PriceStaleTolerance::

Strict :

188 let stale_tolerance = match params.request_type {

189 RequestType::Market => PriceStaleTolerance::Loose,

190 RequestType::Trigger => PriceStaleTolerance::Strict,

191 };

programs/perpetuals/src/instructions/create_increase_position_request.rs#L188-L191

But when updating a trigger request, the tolerance will be set to PriceStaleTolerance::

Loose :

115 let current_token_price = OraclePrice::new_from_oracle(

116 &ctx.accounts.custody_oracle_account.to_account_info(),

117 &custody.oracle,

118 curtime,

119 custody.is_stable,

120 PriceCalcMode::Ignore,

121 None,

122 PriceStaleTolerance::Loose,

123 None,

124 false,

125)?;

programs/perpetuals/src/instructions/update_increase_position_request.rs#L115-L125

Impact

Limit orders can be executed using expired prices, which gives arbitrage searcher some
possible opportunities for profit.

Recommendation

Use PriceStaleTolerance:: Strict in theupdate request ix, as only the trigger requests
are allowed to be updated.

Mitigation Review Log

Jupiter Team: PR-64

Offside Labs:Fixed.

16 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/create_increase_position_request.rs#L188-L191
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/update_increase_position_request.rs#L115-L125
https://github.com/jup-ag/perpetuals/pull/64

4.10 Unprotected Jupiter Swap Integration for Limit Order

Severity: Low Status: Fixed

Target: Smart Contract Category: Logic Error

Description

Users can deposit and withdraw tokens that differ from the collateral token of a given pool.
These token are converted via a bundled Jupiter swap IX. The Jupiter quote is set with a
default slippage tolerance of 1%. The protection offered by the Jupiter quotation is solely
against maximum slippage; the minimum output is guaranteed.

Users must define the jupiter_minimum_out parameter within their position requests.
However, this safeguard is currently effective only for market orders. This limitation may
stem from the unpredictability associated with limit order triggers, which complicates the
estimation of the expected swap output.

Additionally, the Jupiter swap associatedwith limit orders introduces extra uncertainty, as
outlined in related issues.

Recommendation

Disable the swap feature for limit orders entirely.

Mitigation Review Log

Jupiter Team: PR-65

Offside Labs:Fixed, decrease_position2 and decrease_position_post_swap now are
deprecated and replace by decrease_position3 , which is without spot swap feature.

4.11 Informational andUndetermined Issues

Unchecked Rounding up for PNL and FeeMayResult in DoS

Severity: Informational Status: Acknowledged

Target: Smart Contract Category: Logic Error

To protect the overall LP of the system from bad debt, both the fee_usd and the trader’s
loss PnL usd use ceil div for rounding up.

325 let (has_profit, pnl_delta) =

326 pool.get_pnl_usd_for_size(position, &token_price, custody,

size_usd_delta)?;↪

programs/perpetuals/src/instructions/decrease_position2.rs#L325-L326

17 Jupiter

https://github.com/jup-ag/perpetuals/pull/65
https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/decrease_position2.rs#L325-L326

And these fee/PnL usd value will be converted to collateral tokens. Fee tokens will be de-
creased, and thePnL tokenswill be increased fromthe collateral_custody.assets.owned

.

The main issue is that it doesn’t check if the PnL/fee collateral token increased/decreased
is not greater than the collateral actually transferred from the user.

The increase of PnL to asset.owned will exceed the actual token amount held in custody,
which could lead to a DoS for all operations except for opening short positions. The reduc-
tion of asset.owned by fee tokens has the same issue, but due to the way fees accumulate,
it is difficult to have a practical impact.

Check the actual remaining collateral usd without fee_usd and PnL just like in the liqui-
date_full_position2 instruction.

Jupiter Team: Acknowledged. It will only affect withdraw fee when there is no short posi-
tion opened at all.

Pool Constraint IsMissing in the Close Position Request Instruction

Severity: Informational Status: Acknowledged

Target: Smart Contract Category: Logic Error

Because there is not a constraint in the ClosePositionRequest.pool , if there is another
pool A (such as an empty pool for testing), user can use the max_request_execution_sec

of the pool A to override the real config of the current pool to bypass the close request time
check. (Despite only one pool available on the present mainnet.)

37 #[account(

38 mut,

39 seeds = [POOL_SEED,

40 pool.name.as_bytes()],

41 bump = pool.bump

42)]

43 pub pool: Box<Account<'info, Pool>>,

programs/perpetuals/src/instructions/close_position_request.rs#L37-L43

Jupiter Team: Acknowledged. This contract will remain 1 pool only.

Fee Calculation Related to Pool Balancing Is Inaccurate

Severity: Informational Status: Acknowledged

Target: Smart Contract Category: Logic Error

Function Pool::get_fee_bps() uses the parameter aum to calculate the target USD
value of an asset. It is used in the swap and add/remove liquidity instructions. However,
the impact of token delta on pool balancing is not entirely the same in these two scenarios.

18 Jupiter

https://github.com/jup-ag/perpetuals/blob/1647dfa818b4560614acdde1b7be6a9931d5671a/programs/perpetuals/src/instructions/close_position_request.rs#L37-L43

Using the same AUM to calculate the target USD will result in inaccurate fee calculation in
the case of add/remove liquidity.

The AUM is the same before and after a swap, but the AUM will increase or decrease ac-
cordingly before and after add/remove liquidity. For example, a pool with tokenA:tokenB
should be 1:1. There are 90 tokenA and 100 tokenB in the pool. A user wants to add liquid-
ity by tokenA. According to Pool::get_fee_bps() function, the target tokenA should be
(90+100)/2 = 95. If the user wants to get a fee discount, he can add a maximum of 9 tokenA.
However, when adding 10 tokenA, the pool reaches balance.

Additionally, when calculating fees in a swap, since there is no check for crossing the target
threshold, this results in still enjoying fee discounts when the swap tokens are twice the diff,
but such swap do not help much in rebalancing the pool.

Jupiter Team: Acknowledged.

Limit Keeper Capabilities of Setting Global Configurations

Severity: Informational Status: Acknowledged

Target: Smart Contract Category: Logic Error

In the existing system, the keeper holds a special role that is currentlymore privileged than
necessary and is hardcoded into the program. In contrast, the admin role is designed to be
transferable. The admin can configure most of the key parameters within the system, with
the exception of max_global_long_sizes and max_global_short_sizes for custodies,
which are under the exclusive control of the keeper.

While making the keeper role configurable is not essential, it is recommended to limit the
keeper’s capabilities to handling position requests only. The authority to set global config-
urations should be reassigned to the admin role.

Jupiter Team: Acknowledged. will remove this when the pool is out of beta.

Filter or FreezeMarket Orders That Cannot Be Closed

Severity: Informational Status: Acknowledged

Target: Keeper Category: Logic Error

In the handleFailedPositionRequest function, if the market orders failed 3 times
the keeper will try to close it to delete it from the queue. But as the comment mentions
// the guy closed his ata and we cannot refund , if the users ata is closed, the
request will never be closed and stay in the pending queue. This will continuously consume
the resources of the keeper.

Jupiter Team: Acknowledged. we actually have updated keeper version, but not updated
yet in this repo.

19 Jupiter

Refactoring the Owner Account Definition in DecreasePosition2

Severity: Informational Status: Fixed

Target: Smart Contract Category: Incorrect Assumption

The owner account in the DecreasePosition2 instruction is incorrectly defined as
a SystemAccount<'info> . This mistake arises from the incorrect assumption that the
owner of the position request is not a PDA. To ensure compatibility with PDA accounts, this
owner account should be designated as UncheckedAccount<'info> .

pub struct DecreasePosition2<'info> {

...

#[account(mut)]

pub owner: SystemAccount<'info>,

}

Given that owner is not used as a mutable account in the current codebase, it could be
eliminated. The constraints associated with the owner field should be enforced in the
same manner as we have implemented in the IncreasePosition2 instruction.

Jupiter Team: PR-65

Offside Labs: Fixed.

20 Jupiter

https://github.com/jup-ag/perpetuals/pull/65

5 Disclaimer

This audit report is provided for informational purposes only and is not intended to be used
as investment advice. While we strive to thoroughly review and analyze the smart contracts
in question, we must clarify that our services do not encompass an exhaustive security exam-
ination. Our audit aims to identify potential security vulnerabilities to the best of our ability,
but it does not serve as a guarantee that the smart contracts are completely free from security
risks.

We expressly disclaim any liability for any losses or damages arising from the use of this re-
port or from any security breaches that may occur in the future. We also recommend that our
clients engage in multiple independent audits and establish a public bug bounty program as
additional measures to bolster the security of their smart contracts.

It is important to note that the scope of our audit is limited to the areas outlined within our en-
gagement and does not include every possible risk or vulnerability. Continuous security prac-
tices, including regular audits and monitoring, are essential for maintaining the security of
smart contracts over time.

Please note: we are not liable for any security issues stemming from developer errors or mis-
configurations at the time of contract deployment; we do not assume responsibility for any
centralized governance risks within the project; we are not accountable for any impact on the
project’s security or availability due to significant damage to the underlying blockchain infras-
tructure.

By using this report, the client acknowledges the inherent limitations of the audit process and
agrees that our firm shall not be held liable for any incidents thatmay occur subsequent to our
engagement.

This report is considered null and void if the report (or any portion thereof) is altered in any
manner.

21 Jupiter

	About Offside Labs
	Executive Summary
	Summary of Findings
	Key Findings and Recommendations
	Stale Limit Order Position Requests Lead to Potential Harmful Executions
	swap_exact_out Can Be Used to Steal Assets Due to Rounding Errors
	Inconsistent Calculation of Fees for swap_exact_out
	Confusing the position_request_ata Can Be Used for DoS
	validate_market_order Can Skip Slippage Verification When entire_position Is True
	withdraw_fees Does Not Update the funding_rate Before Updating the Assets Owned
	Sequential Processing of Limit Orders to Ensure Predictability
	Limit Orders Can Be Used to Get a Free Look Into the Future
	Request Update Instruction Relaxes the Expiration Time of the Oracle Prices
	Unprotected Jupiter Swap Integration for Limit Order
	Informational and Undetermined Issues

	Disclaimer

